

Single-Event Effects Induced by Two-Photon-Absorption:

Overview and Current Status

Dale McMorrow and Joseph S. Melinger

Naval Research Laboratory, Code 6812, Washington, DC 20375

William T. Lotshaw

Consultant, Bethesda, MD 20817

Stephen Buchner

QSS Group., Inc., Seabrook, MD 20706

Mike Maher

National Semiconductor Corp., South Portland, ME 04106

Mark W. Savage

NAVSEA Crane, Code 6054, Crane IN 47522

Outline

- Laser-Induced Single-Event Effects (SEEs)
- The Two-Photon Absorption (TPA)
 SEE Experiment
- 3-D Mapping of Single-Event Transients (SETs)
 in the LM124
- Backside "Through-Wafer" Carrier Injection
- Conclusions

Pulsed Picosecond Laser

- Indispensable tool for SEE characterization
- Above-band gap pulsed laser can inject:
 - a well-characterized quantity of charge
 - in a well-defined location
 - at a well-defined time
 - with a well-defined charge-deposition profile

- Because the laser pulse wavelength is sub-bandgap the material is *transparent* to the optical pulse
- Carriers are generated by nonlinear absorption at high pulse irradiances by the simultaneous absorption of two photons
- Carriers are highly concentrated in the high irradiance region near the focus of the beam
 - Because of the lack of exponential attenuation, carriers can be injected at any depth in the semiconductor material
- This permits 3-D mapping and backside illumination

Carrier generation equation:

$$\frac{dN(r,z)}{dt} = \frac{\alpha I(r,z)}{\hbar \omega} + \frac{\beta_2 I^2(r,z)}{2\hbar \omega}$$

- Because the laser pulse wavelength is sub-bandgap the material is transparent to the optical pulse
- Carriers are generated by nonlinear absorption at high pulse irradiances by the <u>simultaneous</u> <u>absorption of two photons</u>
- Carriers are highly concentrated in the high irradiance region near the focus of the beam
- Because of the lack of exponential attenuation, carriers can be injected at any depth in the semiconductor material
- This permit 3-D mapping and backside illumination

- Because the laser pulse wavelength is sub-bandgap the material is transparent to the optical pulse
- Carriers are generated by nonlinear absorption at high pulse irradiances by the simultaneous absorption of two photons
- Carriers are highly concentrated in the <u>high irradiance region</u> near the focus of the beam
- Because of the lack of exponential attenuation, carriers can be injected at any depth in the semiconductor material
- This permits 3-D mapping and backside illumination

- Because the laser pulse wavelength is sub-bandgap the material is transparent to the optical pulse
- Carriers are generated by nonlinear absorption at high pulse irradiances by the simultaneous absorption of two photons
- Carriers are highly concentrated in the high irradiance region near the focus of the beam
- Because of the lack of exponential attenuation, carriers can be injected at <u>any depth</u> in the semiconductor material
- This permits 3-D mapping and backside illumination

- Because the laser pulse wavelength is sub-bandgap the material is transparent to the optical pulse
- Carriers are generated by nonlinear absorption at high pulse irradiances by the simultaneous absorption of two photons
- Carriers are highly concentrated in the high irradiance region near the focus of the beam
- Because of the lack of exponential attenuation, carriers can be injected at any depth in the semiconductor material
- This permits <u>3-D mapping</u> and <u>backside illumination</u>

COMPLEMENTARY TECHINQUE

- Not intended to replace "conventional" (above band gap) pulsed laser
- Not intended to replace heavy-ion irradiation
- WILL NOT replace these tools
- Is another "Tool" in our "SEE Toolbox"

Three-Dimensional Mapping of SEE Sensitivity

(LM124 Q20: General Characteristics)

Three-Dimensional Mapping of SEE Sensitivity

(LM124 Q20: General Characteristics)

Three-Dimensional Mapping of SEE Sensitivity

(LM124 Q20: General Characteristics)

"Z" Dependence: LM124 Q20 TPA Low Power Measurements

"Z" Dependence: LM124 Q20 TPA: Low Power

(Inverting Configuration; gain of 20)

"Z" Dependence: LM124 Q20 TPA: Low Power

(Inverting Configuration; gain of 20)

"Z" Dependence: LM124 Q20 TPA: Low Power

(Inverting Configuration; gain of 20)

Backside "Through-Wafer" TPA Illumination

Cross Section of Modern Device

Schematic Flip Chip Cross Section

Backside "Through-Wafer" TPA Illumination

LM124 Operational Amplifier

Backside "Through-Wafer" TPA Illumination

LM124 Operational Amplifier

Backside "Through-Wafer" TPA Illumination LM124 Operational Amplifier

Backside "Through-Wafer" TPA Illumination SEU in Flip Chip SRAM

- Issues
 - through-wafer imaging
 - InGaAs FPA
 - highly-doped substrate
 - linear loss from free-carrier absorption
 - attenuates IR beam
 - attenuates illumination light
 - wafer <u>thinned</u> to minimize absorption
- <u>Results</u>: SEUs successfully injected in SRAM by TPA at well characterized locations

Backside "Through-Wafer" TPA Illumination SEU in Flip Chip SRAM Test Structure

2D SEU Map

Conclusions

- The two-photon absorption method represents a novel approach to SEE evaluation with unique capabilities not exhibited by other techniques
- The present work demonstrates the utility of the nonlinear-optical TPA approach as a method for injecting carriers into the active regions of devices using both top-side and through-wafer, backside irradiation
- The use of backside irradiation eliminates interference from the metallization layers, and circumvents many of the issues associated with testing flip-chip-mounted parts
- The first experimental demonstrations of the through-wafer, backside, two-photon-induced single-event effects technique are presented

Nonlinear Optical Measurements: Z-scans

Ultrashort laser pulse induces nonlinear lensing in sample:

$$\Delta n(r,t) = n_2 I(r,z)$$

Open Aperture Z-Scan Measurement of TPA

Antimony-Doped Silicon (0.02 Ω -cm)

Open Aperture Z-Scan Measurement of TPA

Antimony-Doped Silicon (0.02 Ω -cm)

